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I. INTRODUCTION 

I n  a previous work Merkes and Sco t t  [l] constructed continued f r a c -  
t i o n  so lu t ions  t o  the  first order R i c a t t i  equation by using a sequence of 
l i n e a r  f r a c t i o n a l  transformations. 
paper by Luke [3], t o  develop main diagonal Pad6 approxinations t o  the  solu- 
t i o n  of the  f i rs t  order R i c a t t i  equation wit.h r a t i o n a l  coe f f i c i en t s .  Rational 
approximations are advantageous t o  study the  behavior of t he  so lu t ions  i n  a 
global sense. T h a t  i s ,  they  a r e  u se fu l  f o r  evaluation of func t iona l  values i n  
t h e  complex plane including zeros and poles.  

F a i r  [2] u t i l i z e d  the  7-method, see the  

I n  t h i s  r epor t  we develop continued f r a c t i o n  (and hence r a t i o n a l )  
approxirations t o  the  so lu t ion  of  a second order nonlinear equation which i n -  
cludes as s p e c i a l  cases the  equations t r e a t e d  i n  [l] and [2]. 
t i o n s  are obtained by using a sequence of l i n e a r  transformations which leave 
t h e  d i f f e r e n t i a l  equation invariant,  see Davis [41, and a r e  presented i n  
Section 11. For a n  app l i ca t ion ,  i n  Section 111, t h e  algorithm i s  appl ied  t o  
obta in  approximations t o  Pairilev6's first and second transcendents.  

These approxima- 

11. DEVELOFMXNT OF THE RATIONAL APPROXIMATIONS 

Consider the generalized second order R i c a t t i  equation 

where the  c o e f f i c i e n t s  i n  (1) have Taylor 's  series expansions of t he  form 

A, = x2 a$< , Bo = x2 bkxk , Co = x ckxk , 
k=O k=O k= 0 

Q c, 03 

D, = x d p l ~  , E, = 21 e p k  eo # o , F, = fkx" f, f o , 
k= 0 k=O k=O 

k= 0 k= 0 
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We f u r t h e r  assume t h a t  the  solution of (1) has a po7wer s e r i e s  expansion of the 
f o m  

m 

k= 1 

Note t h a t  (2) and (3) together with (1) uniquely de te rn ine  a), and f$ . 
also requi re  that t he  coef f ic ien ts  i n  (3) have the  property t h a t  

We 

.... $P CYo B p . .  
B1 62.. .... . B p + l  

% = I :  : / f o  , p =  0,1,2 . . . .  

and 

- r 2p+l - 

....... P, @p+l 

B, Bpr2 ....... 
. .  

# 0 . p = 0,1,2 ... 

Then ( 4 )  insures  t h a t  y has a continued f r a c t i o n  expansion of the form 

l + .  

( 4 )  
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A transformation of the type 

where m , n p and q a r e  polynomials i n  x nay be necessary t o  bring the  
d i f f e r e n t i a l  equation i n t o  t h e  required form. We suppose t h a t  t h i s  has a l ready  
been done. 
t o  (1). 

See [41 f o r  t h e  r e s u l t s  of applying transformations of t h i s  tyye 
we give a n  example i n  Section III. 

The even approximants of ( 5 )  a r e  the  main diagonal Pad6 approxima- 
t i o n s  t o  y which have t h e  f o l l o i ~ n g  proper t ies .  L e t  

F, 
11 , = n =  

n 
IC 

k= 0 Pn,kx 

n 
k 

qrl,kx 
k=O 

be the  nth order main diagonal Fade approxination t o  y . If Qn i s  formally 
divided i n t o  
representa t ion  of y for  the f irst  (2n+l) terns. The polynomials Pn and 

Qn 

Pn , the  r e su l t i ng  power s e r i e s  agrees with the  power series 

both s a t i s f y  the  recurrence r e l a t i o n  

(7) P = a o ,  p 1 =  cy 0 (l+Cr2x) , Qo = 1 and Q1 = 1 + (el+Q2)x . 0 

Thus, r a t i o n a l  approxinations t o  t h e  so lu t ion  of (1) a r e  immediately f o r t h -  
coming i f  the  values q,CY2 ... can be computed. These values can be obtained 
by u t i l i z i n g  a sequence of l i nea r  f r a c t i o n a l  transformations. Let 
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Repeated app l i ca t ion  of (8) t o  (1) and d iv i s ion  by an:< at each s t e p  y i e lds  

where 

and 

H n + l  = an -1 x 2 E, , n = 0,1>2, .  . . 

En,1 and Fn+l are defined a t  x = 0 and 

Thus the  values @k appearing in  (5) can be computed recursively.  
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. Proof of the convergence of t he  approxinlants i n  (6 )  i n  t h e  general  
case seems e lus ive  espec ia l ly  since the  values of ak  are not i n  genera l  
known i n  closed form. However, i n  t he  sFec ia l  case of the  first order  R i c a t t i  
equation, some convergence proofs a r e  ava i l ab le ,  see [l] and [ 2 ] .  
one can imply convergence of the  approximants i n  (6 )  by comparing the  values of 
t he  nth and (n+l)s t  approximations. 
t he  cases inves t iga ted  the  ac tua l  e r r o r  of t h e  n th  approximnt  i s  the  same 
order of magnitude as the  difference,  yn+l(x)  - yn(x) . 

Heur i s t i ca l ly  

In  p rac t i ce  t h i s  works very w e l l ,  and i n  

111. EXAMPLES 

We consider two examples which exh ib i t  t he  u t i l i t y  of these  approxi- 
mations vhen used t o  approximate both the  funct ion and i t s  poles. 

Painlev6 ' s  first  and second transcendents a r e  defined by the  d i f f e ren -  
t i a l  equations 

and 

v l l  - zV3 - xv - = o , v ( ~ )  = 1 , v y ~ )  = o , 

respec t ive ly .  I n  what follows, A = Ll, = 1.0 . 
To c a s t  (12) and (13) i n t o  the  required form of (1); we s e t  

i n  which case (12) and (13) become u = 1 + 3x2E and v = 1 + 1.5x2V 

2 - 
3~ a'' + 12xE' + ( 6  - 3 6 ~ * ) E  - 5 4 ~ ~ 3  - (6  + X )  = 0 , ~ ( 0 )  = 1 (14) 

and 
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. 
Now u has a pole of the second order a t  x = 1.2067 and v has a simple 
pole a t  x = 1.1577. This behavior manifests i t se l f  i n  Tables I and I1 below 
i n  which E6 and F6 are the s ixth order main diagonal Pad5 approximations 
t o  U and obtained using the algorithm of Section 11. We have 

TABU I TABU I1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 

1.0000 
1.0305 
1.1264 
1.3015 

2.0228 
2.7212 
3.8909 
6.0383 
10.6226 
23.3936 
87.7732 

1.5831 

1.0000 
1.0305 
1.1264 
1.3015 
1.5831 
2.0228 
2.7212 
3.8909 
6.0383 
10.6223 
23.3860 
a7 3769 

X 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0000 
1.0152 
1.0626 
1.1464 
1.2742 
1.4592 
1.7254 
2.1184 
2.7369 
3.8344 
6.3110 

1.0000 
1.0152 
1.0626 
1.1464 
1.2742 
1.4592 
1.7254 

2.7369 
2.1184 

3. a343 
G ,3104 

The values of u(x) and v(x)  were taken from a paper by Simon E57 who used 
(12) and (13) as exam--les i n  a study of a numerical i n t eg ra t ion  ttchriique for 
t h e  so lu t ion  of  i n i t i a l  value problems i n  ordinary d i f f e r e n t i a l  equations.  

The poles of si.?allest magnitude of u6; and v6 a r e  1.2058 t i.0134 
and 1.1578, respect ively,  s o  tha t  one would expect t h a t  the poles of u and 
v could be computed t o  any desired degree of accuracy using higher order 
approximations. Indeed t h i s  i s  the  case when the  approximations converge. 

- 6 -  



. 
REFEFUiNCES 

I 

1. Merkes, E. P. ,  and Scot t ,  W. T . ,  "Continued Fraction Solutions of -the 
R i c a t t i  Equation," J. Math. Anal. Appl., 4, 309-327 (1962). - 

2. Fa i r ,  W . ,  "Fad& Approximtions t o  the  Solution of t h e  R i c a t t i  Equation," 
Math. Comp., v. 18, No. 88, 627-634 (1964). 

3. Luke, Y. L. ,  "The €ad6 Table and t h e  7-blethod," J. Math. and Fhys., v. 37, 
110-127 (1958). 

4. Davis, H. T . ,  Introduction t o  Nonlinear D i f f e r e n t i a l  and I n t e g r a l  Equations, 
Dover, New York, Ch. 8 (1962). 

5 .  Simon, W. E . ,  "Numerical Technique f o r  Solution and Error  Estimate for the 
I n i t i a l  Value Problem," Math. Comp., v. 18, No. 91, 387-393 (1965). 

- 7 -  


